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Abstract

Recently a simple explicit model was introduced to represent the J–V characteristics of an illuminated solar cell with parasitic resis-
tances and bias dependent photocurrent as vm + jn = 1. Here the normalized voltage, v and normalized current density j can be repre-
sented as v = V/Voc and j = J/Jsc respectively, where Voc is the open circuit voltage and Jsc is the short circuit current density. This
model is useful for design, characterization and simple fill factor calculation and its applicability was demonstrated with the measured
data of a wide variety of solar cells. This explicit form is intuitive and hence the model lacks the analytical support. In this paper an
analytical derivation of this closed form explicit model is presented, which is derived from the physics based implicit J–V equation.
The derivation expands the scope of model applicability and provides a new insight of analytical modeling of the solar cell.
� 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the best options for future sustainable energy
requirements of the world is the electricity generated from
solar cells (Razykov et al., 2011). For an illuminated solar
cell having parasitic series and shunt resistances, the sim-
plest of the current density–voltage (J–V) equations called
the Single Exponential Model (SEM), has an implicit form

J ¼ J ph � J 0 exp
V þ JRs

gV t

� �
� 1

� �
� V þ JRs

Rsh
; ð1Þ

where J0 is the dark current density; Jph is the photogener-
ated current density; Vt is the thermal voltage at tempera-
ture T; g is the ideality factor; Rs is the unit area parasitic
series resistance; and Rsh is the unit area parasitic shunt
resistance. Different expressions for Jphv have been

proposed in literature (for a-Si (Hegedus, 1997; Hegedus
and Philips, 1994) and a-SiGe cells (Hegedus, 1997), for
BEH1BMB3–PPV:PCBM polymer cells (Mihailetchi et al.,
2005) and MDMO–PPV:PCBM polymer cells (Mihailetchi
et al., 2004), etc.).

The implicit form of (1) calls for iterative calculations to
compute the maximum power point (Vmpp,Jmpp) and the
fill-factor (FF) in terms of physical parameters (Zhu et al.,
2011). For simplification of the calculation, efforts have been
made to transform (1) to an explicit form (Karmalkar and
Haneefa, 2008; Jain and Kapoor, 2004; Banwell and Jayaku-
mar, 2000; Ortiz-Conde and Garcia Sanchez, 1992; Abu-
elma’atti, 1992; Fjeldly et al., 1991; Saloux et al., 2011;
Das and Karmalkar, 2011). Some semi-empirical approach
is also used on solar panel (similar expression like (1)) to esti-
mate the J–V (De Soto et al., 2006).

Recently an explicit model was proposed in Das (2011),
which is validated with wide variety of solar cells. Similar
modeling approach is also introduced in Saetre et al.
(2011). Denoting the short circuit current density as Jsc
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and the open circuit voltage as Voc, the normalized voltage,
v and normalized current density j can be represented as
v = V/Voc and j = J/Jsc respectively. This representation
shows that the simple analytical explicit function fits the
wide variety of J–V measurement accurately (Das, 2011;
Saetre et al., 2011):

vm þ jn ¼ 1 ð2Þ
This analytical model (2) allows the closed form estimation
of the entire J–V curve and is useful for a simple calcula-
tion of maximum power point and fill factor. But this equa-
tion has lacked analytical support as it has been arrived at
empirically by intuition.

In this paper it is shown that, (1) can be transformed
into (2) by series of algebraic manipulations. This paper
provides an analytical basis for the proposed explicit model
(2). The derivation is presented in Section 2.

2. Derivation

Assuming J0� Jph, (1) transforms to

J � J phv

1þ Rs=Rsh
� V =Rsh

1þ Rs=Rsh

� J 0

1þ Rs=Rsh

� �
exp

V þ JRs

gV t

� �
ð3Þ

Set J = Jsc for V = 0 to get

J sc ¼
J phsc

1þ Rs=Rsh
1� J 0

J ph

� �
exp

J scRs

gV t

� �� �

� J phsc

1þ Rs=Rsh
ð4Þ

Set V = Voc for J = 0 to get

J phoc � J 0 exp
V oc

gV t

� �
� V oc

Rsh
¼ 0 ð5Þ

Rewrite (3) in a normalized form by dividing throughout
by Jsc of (4), substituting for J0/Jphoc from (5),

j � J phv

J phsc
� V oc

J phscRsh

� �
v� J phoc

J phsc
� V oc

J phscRsh

� �

X exp½ascj� aocð1� vÞ� ð6Þ

where v = V/Voc and j ¼ J=J sc; aoc ¼ V oc
gV T

and asc ¼ JscRs
gV T

.
For simplification of the calculation, let us consider
a ¼ V oc

JphscRsh
and b ¼ Jphoc

Jphsc
; hence Eq. (6) transforms into

j ¼ 1� av� uðvÞ � ðb� aÞ expfaocðv� 1Þ þ ascjg ð7Þ
where u(v), which is due to bias dependent photocurrent,
can be represented as u(v) = 1 � (Jphv/Jphsc). Since v < 1,
we can express the term (v � 1) in terms of log v using Tay-
lor’s series expansion of logv = log(1 � 1 � v) in the form
of (v � 1)dv where

1 6 dv ¼ 1þ ð1� vÞ
2
þ ð1� vÞ2

3
þ . . . 61 ð8Þ

So that

v� 1 ¼ log v
dv

ð9Þ

Similarly, since j < 1, using Taylor’s series expansion of
log(1 � j), we can state that

j ¼ � logð1� jÞ
dj

ð10Þ

where

1 6 dj ¼ 1þ j
2
þ j2

3
þ . . . 61 ð11Þ

Hence using (9) and (10), replacing (v � 1) and j terms in
the right hand terms of (7), we can state that

j ¼ 1� av� uðvÞ � ðb� aÞv
aoc
dv ð1� jÞ�

asc
dj ð12Þ

The J–V characteristic of a solar cell is linear when v is very
small and near to 0, and shows a non-linear characteristic
when v is high and close to 1. When v is small (j is high)
we can consider j � 1 � av � u(v), which represents the lin-
ear relationship between v and j. For algebraic simplifica-
tion let us divide (12) by 1 � av � u(v),

j
1� av� uðvÞ ¼ 1� ðb� aÞ

1� av� uðvÞ v
aoc
dv ð1� jÞ�

asc
dj ð13Þ

Here it is easy to see that w hen v is small the last term
becomes very small and hence shows a linear relationship
between j and v. The non-linear characteristic of J–V is
due to this last term of (13), where v is high (j is small).
By simple algebraic manipulation (13) transforms into

b� a
1� av� uðvÞ v

aoc
dv ¼ ð1� jÞ

asc
dj 1� 1

1� av� uðvÞ j
� �

ð14Þ

For an ideal solar cell, where photocurrent is not bias
dependent and shunt resistance Rsh is very large, the value
of 1 � av � u(v) = 1. For a non-ideal case (where Rsh is not
large and/or the photocurrent is bias dependent), it is easy
to see that 1 � av � u(v) is nearly equal to 1 while j is near
to 1 or high. Hence we can state that while j is high or
nearly equal to 1,

1� 1

1� av� uðvÞ j
� �

� ð1� jÞ
1

1�av�uðvÞ ð15Þ

Interestingly by approximation we can state that the previ-
ous statement (15) is also valid while j is small or near to 0.
Hence for all values of j, (14) can be approximated as,

b� a
1� av� uðvÞ v

aoc
dv ¼ ð1� jÞ

asc
dj
þ 1

1�av�uðvÞ ð16Þ

For algebraic simplification considering,

k ¼ 1� av� uðvÞ
b� a

� �1= asc
dj
þ 1

1�av�uðvÞ

� 	
ð17Þ

and
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m ¼
aoc
dv

asc
dj
þ 1

1�av�uðvÞ
; ð18Þ

we can state that (16) can be transformed into

vm ¼ ð1� jÞk ð19Þ
To express the last term of (19) in power term expansion,
let us consider

ð1� jÞk ¼ 1� jn ð20Þ
Such that

n ¼ logf1� ð1� jÞkg
logf1� ð1� jÞg ð21Þ

By Taylor’s series expansion,

n ¼ k
1þ ð1�jÞ

2
k þ ð1�jÞ2

3
k2 þ . . .

1þ ð1�jÞ
2
þ ð1�jÞ2

3
þ . . .

ð22Þ

For an ideal solar cell, where photocurrent is not bias
dependent (u(v) = 0) and shunt resistance Rsh is very large,
(a = 0) the value of k = 1. For non-ideal case (where Rsh is
not large and/or the photocurrent is bias dependent), it is
easy to see that k is nearly equal to 1. Hence using (22),
without loss of so much accuracy we can approximate
the value of n as,

n � k ¼ 1� av� uðvÞ
b� a

� �1= asc
dj
þ 1

1�av�uðvÞ

� 	
ð23Þ

Hence (19) can be approximated as (2).
Though in (18) and (22) m and n appear to be the func-

tion of j and v, it is possible to find constant effective values
for m and n that are usable for all v without loss of much
accuracy. Since the proposed model matches at the
extremes of v = 0 and v = 1, independent of the values of
dv and dj. Due to (9), it is obvious that the value of dv is
dependent on v except for v = 0 and v = 1 and not depen-
dent on any other physical parameters of the solar cell;
therefore, any assumption of dv independent of v will rep-
resent a loss of accuracy, and such an assumption becomes
absurd in the vicinity of v = 0. But since the nonlinear term
vanishes for v going to 0 (see Fig. 1a), this has no severe
consequences in the low-bias range, wherefore an effective
value of dv can be used in the characteristics in the strongly
nonlinear range. It would be appropriate to locate a dom-
inant point where linear and non-linear effects, both are
reflected and the dominated point lies in non-linear region.
For simplification of calculation, it is interesting to see that
for an ideal solar cell with infinite shunt resistance and bias
independent photocurrent (n = 1), the tangents to (2) at
v = 0 and v = 1 meet at the point where v = (1 � m�1)
(see Fig. 1a). This point can be regarded as a representative
point of non-linear region and it is easy to see that the
maximum portions of the J–V curve to the left and right
of (1 � m�1) can be regarded as representation of the linear
and non-linear terms respectively. Hence to estimate the
values of dv and dj independent of v, we can use the

dominant point as v = (1 � m�1) and using (9) and (10),
the constant effective value of dv and dj can be taken as

dv ¼ �m log 1� 1

m

� �
ð24Þ

dj ¼ �
m

1� 1� 1
m


 �m log 1� 1

m

� �
ð25Þ

The actual variation of dv as a function of v is shown in the
J–V range where the non-linear term dominates (Fig. 1a).
The choice of the dominant point v in non-linear region
for the determination of the effective value of dv and dj

affects the accuracy of the approximation. For different val-
ues of v in non-linear region, dv and dj are calculated and
used to calculate the root-mean-square-error of (7) and
(12) as shown in Fig. 1b. It is interesting to see that the
minimum error occurs at a point close to v = (1 � m�1).
Hence this point gives a satisfactory representation of a
dominant point to calculate the effective values of dv and
dj. To reduce the preceding expressions to simple numerical
results, we use the fact that the range 4 < m < 25 covers a
very wide variety of poor-to high-quality cells. For this
range of m, (24) and (25) produces 1.02 < dv < 1.15 and
1.59 < dj < 1.68. So that we can approximate,

dv � 1þ 0:7

m
ð26Þ

dj � 1:57þ 0:7

m
ð27Þ

Fig. 1. (a) Normalized J–V curve of silicon solar cell (Karmalkar and
Haneefa, 2008; Das, 2011) (parameters are shown in the table in (b) and
the explicit model using (2). Line shows the explicit model (2) whereas the
points show the implicit model (1). The tangents at the point v = 0 and
v = 1 meets a point where v = 1 � (1/m). The non-linear term in (13) and
the variation of dv is also shown. (b) represents the variation of dv and the
root-mean-square error of approximation (dotted line).

28 A.K. Das / Solar Energy 86 (2012) 26–30



Author's personal copy

Using the effective value of dv and the dominant point
v = (1 � m�1), we can solve (18) for v independent value
of m and without loss of much accuracy the value of m

can be approximated as,

m �
1:57aoc � 0:25asc � 1:1

1�a

asc þ 1:57
1�a

ð28Þ

Using the value of m, n can be approximated as,

n �
1� a 1� 1

m


 �
b� a

� �1 asc
1:57þ0:7

m
þ 1

1�a 1�1
mð Þ

� ��
ð29Þ

3. Discussion

The value of m and n derived in (28) and (29) respec-
tively are related to the physical parameters of the solar
cell. This derivation gives an analytical validation of pro-
posed model. These values are used to compute the fill fac-
tor (FF) of different solar cells using the following equation
(Das, 2011):

FF ¼ vmppjmpp ¼
m
n

� 	1=n
1þ m

n

� 	� 1
mþ1

nð Þ
ð30Þ

The derivation in this paper brings the functional relation-
ship between the model parameters m and n and the phys-
ical parameters of the solar cell as shown in Table 1.

As shown in Table 1, when the photo-current in bias
dependent solar cell like a-Si (Hegedus, 1997), the b
becomes less than 1 while in other cells where the photo-
current is bias independent the value of b remains 1. Sim-
ilarly when the shunt resistance Rsh is high like Si (Das,
2011), the value of n becomes 1. While it is not large, the
value of a become small but finite and hence the value of
n becomes nearly equal to 1. While the usefulness and the

applicability of the explicit model (2) are already demon-
strated in Das (2011), Saetre et al. (2011), this paper gives
an analytical basis of the explicit model showing the
approximate functional relationship of model parameters
and solar cell parameters.

4. Conclusion

In this paper it is shown how the physically based impli-
cit J–V equation of an illuminated solar cell, which con-
tains the exponential, can be transformed into the
recently proposed explicit model for characterization of
the solar cell. The derivation is achieved by a series of alge-
braic manipulations, which establish the origin of the intu-
itive model. This paper elevates the earlier explicit model
(Das, 2011; Saetre et al., 2011), which is regarded as purely
empirical, to a physical model applicable to a wide variety
of solar cells.
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